Eidgendssische Ecole polytechnique fédérale de Zurich

Technische Hochschule Politecnico federale di Zurigo

Zirich Federal Institute of Technology at Zurich
Departement of Computer Science 04. November 2019

Markus Puschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 7 HS 19

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:

Points:

Submission: On Monday, 11 November 2019, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by * are challenge exercises. They do not count towards bonus
points.

Exercise 7.1 Longest Ascending Subsequence.

The longest ascending subsequence problem is concerned with finding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. The subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5,4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1,4, 8, and 1, 2, 8.

Given is the array:
[19,3,7,1,4,15,18,16,14,6,5,10,12,19,13,17, 20, 8, 14, 11]

Use the dynamic programming algorithm as described in class or the script to find the length of a
longest ascending subsequence and the subsequence itself. Show all necessary tables and information
you used to obtain the solution.

Exercise 7.2 Longest Common Subsequence.

Given are two arrays, A of length n, and B of length m, we want to find the their longest common
subsequence and its length. The subsequence does not have to be contiguous. For example, if A =
[1,8,5,2,3,4] and B = [8,2,5,1,9, 3], a longest common subsequence is 8, 5,3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A=17,6,3,2,84,51]

and
B =3,9,10,8,7,1,2,6,4,5],

Use the dynamic programming algorithm as described in class or the script to find the length of a
longest common subsequence and the subsequence itself. Show all necessary tables and information
you used to obtain the solution.

Exercise 7.3 Tinder Don*na Juan™a (1 Point).

You registered on Tinder and you got a lot of matches (you may assume that you have an endless
amount of matches). Now, you would like to create a schedule for your dates. You don’t date more than
one person per day. Further, the day after having a date you always tell your best friend how it went
and, thus, do not have time for a date on that day.

You tell your best friend about your success on Tinder and that you are trying to find a nice schedule
for your dates. Your best friend challenges you to enumerate all possible date-schedules for the next T°
days. A schedule consists of T" entries, where the i-th entry contains whether you have a date on this
day or not.

Use dynamic programming to determine the number of different date-schedules under your constraints.
Hint: In order to achieve full points your algorithm should solve this problem using O (T") time and memory.
Address the following aspects in your solution:

1. Definition of the DP table: What are the dimensions of the table D P[...]? What is the meaning of
each entry?

2. Definition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the final solution be extracted once the table has been filled?

6. Running time: What is the running time of your solution?

Specifically, you can use the following scheme:
Dimensions of the DP table:
Definition of the DP table:

Calculation of an entry:

Calculation order:

Reading the solution:

Running time:

Exercise 7.4 Longest Snake (2 points).

You are given a game-board consisting of hexagonal fields F1, ..., F},. The fields contain natural num-
bers v1,...,v, € N. Two fields are neighbours if they share a border. We call a sequence of fields
(Fiy, ..., Fiy,) a snake of length k if, for j € {1,...,k — 1}, I}, and Fj,_, are neighbours and their
values satisfy v;; , = v;; + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that F; are represented by their indices. Also you may assume that you
know the neighbours of each field. That is, to obtain the neighbours of a field F; you may call N'(F;),
which will return the neighbours N (F;) = {F},, ..., Fj;}. Each call of N takes unit time.

a) Provide a dynamic programming algorithm that, given a game-board F1,..., F,, computes the
length of the longest snake.

Figure 1: Example of a longest snake.

Hint: In order to achieve full points your algorithm should solve this problem using O(nlogn) time,
where n is the number of hexagonal fields.

Address the following aspects in your solution:

(@) Definition of the DP table: What are the dimensions of the table DP]...]? What is the meaning
of each entry?

(b) Definition of the DP table: What is the meaning of each entry?

(c) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(d) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(e) Extracting the solution: How can the final solution be extracted once the table has been filled?

(f) Running time: What is the running time of your solution?

Specifically, you can use the following scheme:

Dimensions of the table:

Meaning of a table entry (in words):

Computation of an entry (initialization and recursion):

Order of computation:

Computing the output:

Running time:

b) Provide an algorithm that takes as input F1, ... F,, and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in ©-notation in terms of n.

¢)* Find a linear time algorithm that finds the longest snake. That is, provide an O(n) time algorithm
that, given a game-board F1, . .., F,, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

