

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Exercise sheet 7

Departement of Computer Science Markus Püschel, David Steurer Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures

04. November 2019

HS 19

Exercise Class (Room & TA):	
Submitted by:	
Peer Feedback by:	
Points:	

Submission: On Monday, 11 November 2019, hand in your solution to your TA *before* the exercise class starts. Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

Exercise 7.1 Longest Ascending Subsequence.

The longest ascending subsequence problem is concerned with finding a longest subsequence of a given array A of length n such that the subsequence is sorted in ascending order. The subsequence does not have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

$$[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]$$

Use the dynamic programming algorithm as described in class or the script to find the length of a longest ascending subsequence and the subsequence itself. Show all necessary tables and information you used to obtain the solution.

Exercise 7.2 Longest Common Subsequence.

Given are two arrays, A of length n, and B of length m, we want to find the their longest common subsequence and its length. The subsequence does not have to be contiguous. For example, if A = [1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3. Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:

$$A = [7, 6, 3, 2, 8, 4, 5, 1]$$

and

$$B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],$$

Use the dynamic programming algorithm as described in class or the script to find the length of a longest common subsequence and the subsequence itself. Show all necessary tables and information you used to obtain the solution.

Exercise 7.3 *Tinder Don*na Juan*a* (1 Point).

You registered on Tinder and you got a lot of matches (you may assume that you have an endless amount of matches). Now, you would like to create a schedule for your dates. You don't date more than one person per day. Further, the day after having a date you always tell your best friend how it went and, thus, do not have time for a date on that day.

You tell your best friend about your success on Tinder and that you are trying to find a nice schedule for your dates. Your best friend challenges you to enumerate all possible date-schedules for the next T days. A schedule consists of T entries, where the i-th entry contains whether you have a date on this day or not.

Use dynamic programming to determine the number of different date-schedules under your constraints.

Hint: In order to achieve full points your algorithm should solve this problem using $\Theta(T)$ time and memory.

- Address the following aspects in your solution:
 - 1. Definition of the DP table: What are the dimensions of the table DP[...]? What is the meaning of each entry?
 - 2. *Definition of the DP table*: What is the meaning of each entry?
 - 3. *Computation of an entry*: How can an entry be computed from the values of other entries? Specify the base cases, i.e., the entries that do not depend on others.
 - 4. *Calculation order*: In which order can entries be computed so that values needed for each entry have been determined in previous steps?

have been determined in previous steps:
5. Extracting the solution: How can the final solution be extracted once the table has been filled?
6. Running time: What is the running time of your solution?
Specifically, you can use the following scheme:
Dimensions of the DP table:
Definition of the DP table:
Calculation of an entry:
Calculation order:
Reading the solution:
Th
Running time:

Exercise 7.4 Longest Snake (2 points).

You are given a game-board consisting of hexagonal fields F_1, \ldots, F_n . The fields contain natural numbers $v_1, \ldots, v_n \in \mathbb{N}$. Two fields are neighbours if they share a border. We call a sequence of fields $(F_{i_1}, \ldots, F_{i_k})$ a snake of length k if, for $j \in \{1, \ldots, k-1\}$, F_{i_j} and $F_{i_{j+1}}$ are neighbours and their values satisfy $v_{i_{j+1}} = v_{i_j} + 1$. Figure 1 illustrates an example game board in which we highlighted the longest snake.

For simplicity you can assume that F_i are represented by their indices. Also you may assume that you know the neighbours of each field. That is, to obtain the neighbours of a field F_i you may call $\mathcal{N}(F_i)$, which will return the neighbours $\mathcal{N}(F_i) = \{F_{j_1}, \dots, F_{j_6}\}$. Each call of \mathcal{N} takes unit time.

a) Provide a dynamic programming algorithm that, given a game-board F_1, \ldots, F_n , computes the length of the longest snake.

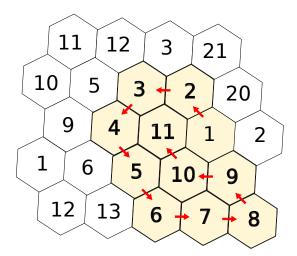


Figure 1: Example of a longest snake.

Hint: In order to achieve full points your algorithm should solve this problem using $O(n \log n)$ time, where n is the number of hexagonal fields.

Address the following aspects in your solution:

- (a) Definition of the DP table: What are the dimensions of the table DP[...]? What is the meaning of each entry?
- (b) *Definition of the DP table*: What is the meaning of each entry?
- (c) *Computation of an entry*: How can an entry be computed from the values of other entries? Specify the base cases, i.e., the entries that do not depend on others.
- (d) *Calculation order*: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- (e) Extracting the solution: How can the final solution be extracted once the table has been filled?
- (f) Running time: What is the running time of your solution?

Specifically, you can use the following scheme:

Dimensions of the table:
Meaning of a table entry (in words):
Computation of an entry (initialization and recursion):
Order of computation:
Computing the output:
Running time:
Provide an algorithm that takes as input F_1, \ldots, F_n and a DP table from part a) and outputs the

c)* Find a linear time algorithm that finds the longest snake. That is, provide an $\mathcal{O}(n)$ time algorithm that, given a game-board F_1, \ldots, F_n , outputs the longest snake (if there are more than one longest snake, your algorithm can output any of them).